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Although the definition of limit was initially constructed by Augustin-
Louis Cauchy and later amended by various mathematicians such as Karl
Weierstrass, attempts at understanding and utilizing this concept had al-
ready begun in ancient Greece. In particular, mathematicians had started
pondering the concept of convergence and limit in a axiomatic, quantitative
fashion and utilize convergent sequences and series in problems on geometry.

The attempt to understand the concept of limit can be traced back to
Zeno of Elea, a Greek philosopher and mathematician, and the two paradoxes
he brought up [1]. The first paradox, the Dichotomy Paradox, states that if
a person wants to walk to a wall, they must first reach the halfway point.
After that, the remaining distance, which is half the original, still has to be
covered, thus requiring the person to reach the halfway point of that, yet
a quarter of the whole distance remains. This recursive process could be
repeated infinitely, so it seems impossible for the person to reach the wall,
for the process is never-ending. In the second paradox, the Achilles and the
Tortoise Paradox, Achilles tries to chase a tortoise from behind. Denote the
beginning position of the tortoise x0. Before Achilles passes the tortoise, he
must first reach x0. But by the time Achilles does so, the tortoise has moved
forward to a different position, denoted x1. Achilles then has to move to x1,
but by then the tortoise would have moved to x2, and this process goes on
infinitely as well. Achilles seemingly could never catch up with the tortoise.
It is both a mathematical intuition and real-life common sense that a person
is able reach a wall and that a person could catch up with a tortoise. What
contradiction induced this paradox?

The Dichotomy Paradox and the Achilles-Tortoise Paradox are constructed
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in the same fashion. We could see this using an anachronistic tool in physics
unavailable to the ancient Greek mathematicians. Suppose in the second
example, we could setup the reference frame such that the tortoise is immo-
bile. Then the tortoise essentially equivalent to the wall in the first paradox,
and Achilles (the person) would be moving towards the tortoise (the wall),
with the magnitude of his speed equal to the difference between their speed
relative to the ground. Then without loss of generality, let us focus our at-
tention on the first paradox, the resolution of which implies the resolution of
the second paradox as well.

Aristotle’s answer to the Zeno’s Paradox is that quantitative infinity and
infinity of divisibility are two different concepts [2]. A value can be finite in
magnitude, yet infinitely divisible into smaller portions. That is to say, from
a bottom-up perspective, that an infinite series of numbers could sum up to
a finite value. Aristotle also recognizes the shared nature of the Dichotomy
Paradox and the Achilles Paradox and claims that ”the solution must be the
same” [2].

Archimedes, on the other hand, used a quantitative approach similar to
how modern mathematicians would do, minus the rigorousness of defining the
concept of limit. He derived the infinite series 1

2
+ 1

4
+ 1

8
+ ... = 1 [3]. We now

know to write the infinite series in terms of the limit limn→+∞
∑n

k=1
1
2k

= 1
instead, then to evaluate it by Cauchy and Weierstrass’ ε − N and ε − δ
definition of limit. This rigorous approach, of course, was invented centuries
later [4], and Archimedes’ approach is exceptional for his time.

The implication of Archimedes’ approach is much greater, as solving
complicated geometric problems becomes possible under the same method.
Archimedes solved two geometric problems in this way: the Quadrature of
the Parabola, that is, to calculate the area between a parabola and a line,
and to calculate π, the ratio between the circumference and the diameter of
a circle.

2



Figure 1: Triangles in the Enclosed Area [5]

Archimedes’ approach to calculating the area bounded by the parabola
and the line AC in Figure 1 is as follows. First, he would construct a point
B such that the tangent line of the parabola at point B is parallel to line
AC; points P and Q are then constructed in the same fashion with respect
to line BC and line AB. He then concluded that the areas of the smaller
triangles are each 1

8
of the larger triangle. If we denote the area of triangle

ABC as a, then the sum of the area of the two shaded triangles would be
a · 1

8
· 2 = 1

4
a. Since P and Q are constructed in the same way as point B, we

can apply the same procedure on the triangles PBC and QAB as well. This
would result in 4 smaller triangles whose areas’ sum is 1

4
the sum of PBC

and QAB’s area, or 1
4
a · 1

4
= 1

16
a. If we repeat this process, we would obtain

the series a+ 1
4
a+ 1

16
a+ ...+ 1

4n
a, or a

∑n
k=1 4k−1, whose value represent the

sum of the areas of all the triangles and, as Archimedes noticed, approaches
the enclosed area as n approaches infinity.
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Figure 2: Series Visualized [6]

Our burden now shifts to solving this infinite series. Archimedes set up a
series of square areas, represented by Figure 2, for which A = 4B, B = 4C,
etc. Then 4

3
B + 4

3
C + 4

3
D = 1

3
A + 1

3
B + 1

3
C. By moving terms, we derive

A + B + C + D + 1
3
D = 4

3
A. If we continue this partition, the area of

the smallest square approaches zero, so the last term of the left hand side

vanishes. If we letA = 1, we would obtain the series 1+1
4
+...+(1

4
)n =

1−( 1
4
)n+1

1− 1
4

in modern notation. At this point, Archimedes used an argument somewhat
similar to the modern ε − δ approach, and demonstrated that the infinite
sum could be neither greater nor less than 4

3
[7]. The quadrature problem is

essentially solved at this point.
Archimedes’ approach to calculating the circumference of the circle is

to create a pair of inscribed and circumscribed regular polygons to give a
tight bound for the circumference of the circle. Suppose the pair of regular
polygon has n sides. It follows that θ = 2π

n
, and by definition we see that

the side length of the inscribing n-gon is 2 sin(1
2
θ) and the side length of

the circumscribing n-gon is 2 tan(1
2
θ), and we obtain the circumference after

multiplying each by n. Unfortunately, during Archimedes’ time, which was
three centuries BCE, even the most rudimentary form of trigonometry had
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Figure 3: Side Lengths of inscribed and circumscribed regular polygon [8]

yet to be invented, so an analysis of this pair of limit is unrealistic. The
actual proof by Archimedes was slightly more arduous.

Figure 4: Archimedes’ geometrical approach [8]

First, Archimedes would take a (2nM)-gon, a subsequence of natural
number n-gons, for ease of calculation (M is an integer greater than 3). It
is possible for us to develop an implicit relationship between the n-th term
and the n − 1-th term of the sequence. Take the point An, a vertex of the
circumscribing M2n-gon, and A the midpoint of a side adjacent to An. By
definition of circumscription, A lies on the circle. Then, take An−1 such that
A, An, and An−1 are on the same line and that 2 6 AOAn = 6 AOAn−1. Point
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An−1 would then be a vertex of the circumscribing M2n−1-gon. Then we’d
have

OAn−1
OA

=
An−1An
AAn

OA+OAn−1
OA

=
AAn + An−1An

AAn
=
AAn−1
AAn

OA

AAn
=

OA

AAn−1
+
OAn−1
AAn−1

What Archimedes did not know, was that this equation translates to a
relationship between trigonometric values: if we let a side of the M2n-gon
correspond to the angle θ = 2π

M2n
at the center of the circle, we would have

6 AOAn = 1
2
θ, and in modern notation, OA

AAn
= cot(1

2
θ) and OAn

AAn
= csc(1

2
θ).

The equation above essentially becomes cot(1
2
θ) = cot(θ) + csc(θ).

On the other hand, we construct Bn and Bn−1 on the other side of the
circle such that 6 BABn = 6 AOAn and 6 BABn−1 = 6 AOAn−1. We’d have
6 BOBn = θ and 6 BOBn−1 = 2θ, making BnB a side of the inscribing
M2n-gon and Bn−1B a side of the inscribing M2n−1-gon. This creates the
sequence P2nM = 2nM ·AB

cot( 2π
M2n

)
and p2nM = 2nM ·AB

csc( 2π
M2n

)
where P is the circumference

of the circumscribing polygon and p the inscribing. Of course, Archimedes
wouldn’t write ”cot” or ”csc”; he would write it in terms of a fraction of side
lengths instead. The in the same nature as the Squeeze Theorem, these 2
sequences would eventually monotonically converge to the value of π from
both directions. Archimedes took M = 6 and n = 4 to calculate a bound of π
[9]. Unfortunately, the Ancient Greek lacked a positional arithmetic system,
which hindered the efficiency of their numerical calculation. Vertical addi-
tion or multiplication was impossible under their number system, and abacus
was used instead. While the calculation of Archimedes is limited in magni-
tude, the algorithm clearly reflected the methodology of using sequences to
approach or bound a certain limit.

These works in ancient Greece demonstrated that mathematicians back
in their era were already dealing with the concept and application of limit.
Though their studies are restricted by the absence of rigorous definition and
limitation of numerical calculation, ancient Greek mathematicians prompted
their successors centuries later to utilize limit in problems and inspired them
to develop the modern definition as we know today, leading to the invention
of calculus, measure theory, and much more.
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