
Algorithmic Stability and Leave-one-out Cross

Validation Bounds

Antong Cheng

May 2023

1 Introduction

The notion of stability is motivated by a simple question. For any mathematical
model, given a small change in the input, by how much does the output change?
This is a non-trivial question. Many problems, such as the three-body prob-
lem, or weather forecasting, are known to have no stable solution. Any small
but inevitable error (due to measurement, sampling, etc.) would eventually be
magnified over time such that long term prediction is impossible.

When it comes to machine learning, ”stability” refers to the model’s capa-
bility of reproducing its predictions given a small change in the sample. We now
provide a few definitions [2] in this idea.

Definition 1. Given a sample set S = {x1, x2, ..., xn} ⊂ X, define S|i to be
the modified sample removing the i-th element and Si to be the modified sample
replacing the i-th element. That is,

S|i = {x1, x2, ..., xi−1, xi+1, ..., xn},

Si = {x1, x2, ..., xi−1, x
′
i, xi+1, ..., xn}.

Through the entirety of the article we assume all our algorithms are sym-
metric. That is, permutations of the sample S generate the same hypothesis
hS .

Definition 2. An algorithm with loss function L has hypothesis stability
(β1, β2) if ∀1 ≤ i ≤ m,

PS(∥hS − hS|i∥ ≥ β2) ≤ β1.

Where ∥ · ∥ denotes any norm on the hypothesis space. For simplicity, we’ll
assume ∥g(x)∥ = Px∈X(g(x) ̸= 0) unless stated otherwise.

Definition 3. An algorithm with loss function L has error stability (β1, β2)
if ∀1 ≤ i ≤ m,

PS(|R(hS)−R(hS|i)| ≥ β2) ≤ β1.

1

Hypothesis stability is, in fact, a stronger statement than error stability. It
was claimed without proof by K and R [2], which we fill in now.

Theorem 1. If H has hypothesis stability (β1, β2), it has error stablity (β1, β2).

Proof. Let f be the target function. Since the algorithm is symmetric and
sampling is i.i.d, without loss of generality, let i = m.

|R(hS)−R(hS|m)| = |Px(hS ̸= f)−Px(hS|m ̸= f)|
= |Ex[1hS ̸=f]−Ex[1h

S|m ̸=f]|
≤ Ex[|1hS ̸=f − 1h

S|m ̸=f |]
= Ex[1(hS ̸=f∧h

S|m=f)∨(hS=f∧h
S|m ̸=f)]

= Px((hS ̸= f ∧ hS|m = f) ∨ (hS = f ∧ hS|m ̸= f))

≤ Px(hS ̸= hS|m)

= ∥hS − hS|m∥

So

{|R(hS)−R(hS|m)| ≥ β2} ⊂ {∥hS − hS|m∥ ≥ β2}
PS(|R(hS)−R(hS|m)| ≥ β2) ≤ PS(∥hS − hS|m∥ ≥ β2)

It is notable that we have not yet defined what it means for an algorithm
to be ”stable” or ”unstable”, which would be a topic for future sections. At
this point, we are simply introducing stability as a tool for analysis. The main
way to use it would be to express β2 as a function of β1, the latter being a
probability measure. We could then pick β1 to be any arbitrary value in (0, 1)
suitable for the proof. This will be our main technique of utilizing this tool.

2 Generalization Error Bound with LOOCV

2.1 Preliminary Results

It is known, due to Vapnik himself, that with arbitrary probability δ, a function
with finite VC dimension is error-stable (that is, can obtain arbitrarily small β2

given arbitrarily small β1) with O(δ,
√
d/m ln(m/d))[1].

Theorem 2. Let S be a sample of size m > 4, H be a hypothesis set with VC
dimension d < m < ∞, then ∀0 < δ < 1, hS ∈ H

P

(
|R(hS)− R̂S(hS)| ≤ 2

√
d(ln(m/d) + 1) + ln(9/δ)

m

)
≥ 1− δ

2

This is to say that empirically, we could approximate the generalization

error R(hS) by the empirical error R̂S(hS) with O
(√

d/m ln(m/d)
)
accuracy.

We now present an alternative way to approximate the generalization error.
Stability, as it turns out, is a strong tool that helps us measure its effectiveness.

2.2 LOOCV Estimate

Definition 4. The Leave-one-out Cross Validation (LOOCV) estimate
is defined as

R̂LOO(hS) :=
|{i ∈ {1, ...,m} : hS|i(xi) ̸= f(xi)}|

m

Intuitively, the LOOCV describes the deviation of the hypothesis hS given
a small change in the input sample S. In the lectures, we have seen cases of
LOOCV analysis being applied on SVM algorithms, namely the notable fact
that it is an unbiased estimator of the generalization error. While this is true,
now with the notion of stability as a tool, further analysis can be conducted to
derive the bound on the accuracy of this estimate. [3] The rest of the section
will be dedicated to proving generalization bounds in terms of LOOCV and
comparing its performance against that of empirical error.

Theorem 3. For any symmetric algorithm with hypothesis stability (β1, β2),
∀δ ∈ (0, 1),

P

(
|R̂LOO(hS)−R(hS)| ≤

√
1/(2m) + 3(β1 + β2)

δ

)
≥ 1− δ

If we further assume that H is a hypothesis set with VC dimension d < ∞
and that the target function is realizable (f ∈ H), then we obtain the following
stronger result [2]:

Theorem 4. Suppose H has VC dimension d < ∞, f ∈ H. If we have a
symmetric algorithm such that R̂S(hS) = 0 for all sample S, then ∀δ ∈ (0, 1)

P

(
|R̂LOO(hS)−R(hS)| = O

(√
(d/m) log(m/d)

δ

))
≥ 1− δ

This is a general result. We explained earlier at the end of section 1 that
we did not define ”stable” and ”unstable”, so this result has no condition de-
pendent on stability. Hypothesis stability is only used as a tool to prove certain
intermediate lemmas. As expected, this is a weak result, with an irresolvable√

1/δ multiplier compared with the empirical error bound. If we use error sta-
bility as a tool, we could derive another general bound. But before that, we
introduce another notion to account for error stability’s weaker implication.

Definition 5. The LOOCV estimate (γ1, γ2)-overestimates the empirical error
if

PS(R̂LOO(hS) ≤ R̂S(hS)− γ2) ≤ γ1

3

Theorem 5. Suppose H has VC dimension d < ∞ and error stability (β1, β2),
and LOOCV (γ1, γ2)-overestimates the training error for A. Let ϵ = 3β1 + β2 +
γ1 + γ2. Then ∀δ > 0,

PS

(
|R̂LOO(hS)−R(hS)| ≤

(
3

√
(d+ 1)(ln(9m/d) + 1)

m
+ ϵ

)
/δ

)
≥ 1− δ

This is to say that for a good approximation, we require both good error
stability (small β1, β2) and also that the two empirical estimates, LOOCV and
empirical error, mostly agree with each other. This leads to the important
following theorem that describes the estimate on an error-minimizing algorithm
[2].

Theorem 6. Suppose H has VC dimension d < ∞ and the algorithm minimizes
empirical error. Then ∀δ ∈ (0, 1),

P

(
|R̂LOO(hS)−R(hS)| ≤

(
8

√
(d+ 1)(ln(9m/d) + 2)

m

)
/δ

)
≥ 1− δ

Proof. First, we claim that any error-minimizing algorithm’s LOOCV (0, 0)
overestimates the training error, that is, R̂LOO(hS) ≥ R̂S(hS) with P = 1.

Suppose, for the sake of contradiction, that ∃S ∼ Dm, i ∈ [1,m] such that
hS(xi) ̸= yi but hS|i(xi) = yi. Now define ϵS(h) := RS(h) · |S|. Since the
algorithm minimizes empirical error, ϵS|i(h) ≥ ϵS|i(hS|i) for all h ∈ H. In
particular, it must hold for hS as well, so

ϵS|i(hS) ≥ ϵS|i(hS|i) (= ϵS(hS|i))

(Since hS|i is correct on xi.) Then see that

ϵS|i(hS) = ϵS(hS)− 1 < ϵS(hS)

But this implies that ϵS(hS) > ϵS(hS|i), which means the former does not
minimize empirical error. So by contradiction, hS|i(xi) = yi implies hS(xi) = yi,
and R̂LOO(hS) ≥ R̂S(hS).

Now, recall that

P

(
|R(hS)− R̂S(hS)| ≤ 2

√
d(ln(m/d) + 1) + ln(9/δ)

m

)
≥ 1− δ

Let β > 0 be arbitrary. Then with P ≥ 1− β1,

R(hS|i) ≤ min
h∈H

{R(h)}+ 4

√
d(ln(2(m− 1)/d) + 1) + ln(9/(β1/2))

m− 1

R(hS) ≤ min
h∈H

{R(h)}+ 4

√
d(ln(2(m)/d) + 1) + ln(9/(β1/2))

m

4

On the other hand, with P = 1,

R(hS|i) ≥ min
h∈H

{R(h)}

R(hS) ≥ min
h∈H

{R(h)}

Then with P ≥ 1− β1,

R(hS|i), R(hS) ∈

(
min
h∈H

{R(h)},min
h∈H

{R(h)}+ 4

√
d(ln(2(m− 1)/d) + 1) + ln(9/(β1/2))

m− 1

)

That is,

|R(hS|i)−R(hS)| ≤ 4

√
d(ln(2(m− 1)/d) + 1) + ln(9/(β1/2))

m− 1

Now set β1 = 2d
m . Combining the fact that R̂LOO(hS) ≥ R̂S(hS) and Theo-

rem 5 we get

P

(
|R̂LOO(hS)−R(hS)| ≤

(
8

√
(d+ 1)(ln(9m/d) + 2)

m

)
/δ

)
≥ 1− δ

As we saw from Theorem 4 and 6, even with stability as a tool, we are not
likely to derive a better generalization bound in terms of LOOCV than empirical
stability. Nevertheless, empirically speaking, LOOCV usually performs better
than empirical error. In order to understand why this happens, we have to
classify algorithms as ”stable” and ”unstable”, in hopes to explain why LOOCV
empirically indeed performs better on many algorithms.

3 Stability with General Loss Function

3.1 Generalized Hypothesis and Error Stability

In the previous section we have been assuming 0− 1 loss for all our algorithms,
and the notions of stability has been defined accordingly. With a general loss
function, it is still possible for us to define the two concepts in a similar sense.
Instead of using the parameter β1, we will capture the stochastic nature of
sampling by taking the expectation of the distance. [4]

Definition 6. An algorithm has (generalized) hypothesis stability β with
respect to the loss function l if ∀i ∈ [1,m],

5

ES,(x,y)[|l(hS , x)− l(hS|i , x)|] ≤ β

If we restrict x ∈ X to x ∈ S, we call this property pointwise hypothesis
stability

Definition 7. An algorithm has (generalized) error stability β with respect
to the loss function l if ∀S ∼ Dm, i ∈ [1,m],

|E(x,y)[l(hS , x)|]−E(x,y)[l(hS|i , x)]| ≤ β

In this generalized definition, error stability is also a weaker form of hypoth-
esis stability, as we’ll independently prove here.

Theorem 7. If an algorithm is hypothesis stable, it is also error stable with
respect to the same loss function. Stable means that limm→∞ mβ < ∞, that is,
β = O(1

m) at least.

Proof. Suppose the algorithm is hypothesis stable, then

lim
m→∞

mES,x[|l(hS , x)− l(hS|m , x)|] = 0

Since S and x are sampled independently, if we further assume the loss functions
are integrable (integral on all space is finite), then by Fubini-Tonelli Theorem,
we could change the order of integration (hence the order of expectation).

lim
m→∞

mES [Ex[|l(hS , x)− l(hS|m , x)|]] = 0

Then since the expectation over x is a nonnegative random variable, by Markov’s
Inequality, ∀ϵ > 0

lim
m→∞

mPS(Ex[|l(hS , x)− l(hS|m , x)|] ≥ ϵ) ≤ lim
m→∞

m
ES [Ex[|l(hS , x)− l(hS|m , x)|]]

ϵ

= 0

3.2 Uniform Stability

We now introduce a new, stronger notion of stability [4]

Definition 8. An algorithm has uniform stability β with respect to the loss
function l if ∀S ∼ Dm, i ∈ [1,m],

∥l(hS , ·)− l(hS|i , ·)∥∞ ≤ β

We could see why this stronger notion of stability motivates a generalized
notion of hypothesis and error stability with respect to a general loss function.
If we were to take the 0−1 loss, the definition would be vacuous. The left hand

6

side would take value 0 if the two loss functions coincide. If they disagree at
any point, there would be a disparity of l = 0 versus l = 1, making the ∞-norm
distance 1. So under the 0-1 loss, the algorithm will be uniformly stable if and
only if f ∈ H, in which case β = 0 is always eventually attained at m → ∞
(so long as the population pool is at most countably infinite, which should be
the case in computing due to representing R with float point numbers), but of
course it’s a bad idea.

Again, we now prove independently that uniform stability is stronger than
hypothesis stability.

Theorem 8. If an algorithm has uniformly stability β, it also has hypothesis
stability β with respect to the same loss function.

Proof. Suppose the algorithm has uniform stability β. Then ∀S ∼ Dm,

β ≥ ∥l(hS , x)− l(hS|i , x)∥∞
≥ sup

x∼D
|l(hS , x)− l(hS|i , x)|

≥ Ex[|l(hS , x)− l(hS|i , x)|]
≥ sup

S∼D
Ex[|l(hS , x)− l(hS|i , x)|]

≥ ES [Ex[|l(hS , x)− l(hS|i , x)|]]

Again, by the integrability of the loss function and the independence of
sample drawn, we can apply Fubini-Tonelli Theorem to combine the integration.

ES,x[|l(hS , x)− l(hS|i , x)|] ≤ β

3.3 Generalization Bounds with (Generalized) Stability

Theorem 9. For an algorithm with pointwise hypothesis stability β with respect
to a loss function l bounded by M , ∀δ ∈ (0, 1)

P

(
R(hS) ≤ R̂S(hS) +

√
M2 + 12Mmβ

2mδ

)
≥ 1− δ

if we replace pointwise hypothesis stability with hypothesis stability, we could
use LOOCV

P

(
R(hS) ≤ R̂LOO(hS) +

√
M2 + 6Mmβ

2mδ

)
≥ 1− δ

Theorem 10. For an algorithm with uniform stability β with respect to a loss
function l bounded by M , ∀δ ∈ (0, 1)

P

(
R(hS) ≤ R̂S(hS) + 2β + (4mβ +M)

√
ln(1/δ)

2m

)
≥ 1− δ

7

P

(
R(hS) ≤ R̂LOO(hS) + β + (4mβ +M)

√
ln(1/δ)

2m

)
≥ 1− δ

If we further assume the algorithm is uniformly stable (β = O(1
m)), the

bounds are tight.

Now we have seen that for a uniformly stable algorithm, LOOCV indeed has
a better (and tight!) bound than empirical estimates.

4 Practical Example

4.1 Problem

We apply LOOCV estimation to the famous problem on Kaggle of predicting
survivorship on the vessel Titanic. The features consists of passenger’s sex, age,
fare, passenger class, family size, etc. Using these features, we must predict
whether that passenger survived or not in the incident. We borrow the dataset
created by community contributor AZEEM BOOTWALA, who sanitized invalid
data and normalized the features to be directly usable in learning. Since it is
a binary classification problem, it is suitable for us to utilize a Support Vector
Machine model, where 1 denotes survived and 0 otherwise. The result is as
follows:

Figure 1: Emp vs Loo for SVM

Algebraically speaking, when m is small, β is large, so the accuracy of both
R̂S and R̂LOO are bad. When m → ∞, β → 0, so the difference between the
two predictions becomes infinitesimal. It is when m that is moderately large
(approximately between 25 and 175) that we see a significant difference take
place. This can also be explained using mathematical intuition. At first, when

8

m is too small, removing or replacing a sample point has a major effect on the
model, and R̂LOO, trying to take an average across multiple completely different
hS|i models, would have a bad accuracy. When m is too large, removing or
replacing a sample point has virtually no effect on the model (hS ≈ hS|i), and
R̂LOO, taking an average across these virtually equivalent hS|i , will not give a
much different result from simply empirically estimating hS .

If we use an algorithm known to be unstable, then the previous bounds and
relationships do not hold.

Figure 2: Emp vs Loo for Decision Tree

5 Stability (and Unstability) of Algorithms

With the above bounds present, the problem now shifts to understanding what
algorithms are stable, and what are not, and if they are stable, how do we bound
its stability constant β. One important intuition in our discussion is that with
the proof of Theorem 6, we have proven a lemma where R̂LOO ≥ R̂S for all
empirical error minimizing algorithms. So if R̂S overestimate the generalization
error, R̂LOO is always a worse estimate. This is to say that there’s generally no
hope in proving the superiority of R̂LOO for error-minimizing algorithms. We
should then focus our attention only on algorithms with regularization terms
present.

We have seen earlier that the naive 0 − 1 loss for binary classifier cannot
induce stability in a non-trivial way. We now introduce a new loss function

lγ(y, y
′) =

1 if yy′ < 0

1− yy′/γ if 0 ≤ yy′ ≤ 1

0 if yy′ > 1

9

With respect to this loss, the k-NN algorithm is unformly stable with stability[4]

β ≤ k

m

The same paper pointed out that in a Hilbert space with a loss function l(·, ·)
induced by a inner product ⟨·, ·⟩ whose induced norm ∥ · ∥is bounded by κ, and
a k-norm regularization with λ multiplier, SVM regression is uniformly stable
with

β ≤ κ2

2λm
and soft margin SVM binary classification is uniformly stable with also

β ≤ κ2

2λm

On the other hand, decision tree is known to be an unstable classifier. Its
instability comes from the fact that if a data point is removed and a data split
is changed, it will affect the entire subtree stemming from the split [5]. Another
geometric intepretation is to treat a decision tree as a partition scheme of a
linear space into hyper-rectangles. If one of those hyper-rectangles are changed,
so must other hyper-rectangles that are adjacent to it. The same paper described
a split selection algorithm to strategically choose the split that affects stability
the least, which alleviates but not eliminate the problem.

Analyzing the stability of neural networks proves to be a difficult task, with
few literature addressing the topic without imposing harsh specific conditions
that impede generality. Hardt et al. [7] sheds some light on the issue by an-
alyzing the stability of stochastic gradient descent, a method of optimization
popularly used for neural network’s objective function.

Theorem 11. Suppose the loss function is locally α-differentiable, convex, and
L-lipschitz at the minimizer, and the algorithm is equipped with stochastic gra-
dient descent with step size (learning rate) rt ≤ 2/α and T steps, then the
algorithm is uniformly stable with stability

β ≤
2L2

∑T
t=1 rt

m

More recently, some scholars argue that uniform stability is still too weak a
notion to deal with neural network related problems because of its independence
from data labeling, which leads to pessimistic bounds with many restrictions.
They call for a stronger notion that could distinguish models trained on the
true labels (small generalization error) and models trained on the random labels
(large generalization error) [8].

References

[1] V.N.Vapnik., Estimation of Dependences Based on Empirical Data.
Springer-Verlag, New York, 1982. pp. 160.

10

[2] M. Kearns and D. Ron, Algorithmic stability and sanity-check bounds for
leave-one-out cross-validation, Neural Comput. 11(6) (1999) 1427–1453.

[3] L. P. Devroye and T. J. Wagner. Distribution-free performance bounds
for potential function rules. IEEE Transactions on Information Theory,
IT–25(5):601–604, 1979.

[4] O. Bousquet and A. Elisseeff. Stability and generalization. J. Mach. Learn.
Res., 2:499–526, 2002.

[5] Ruey-Hsia Li and Geneva G. Belford. 2002. Instability of decision tree
classification algorithms. https://dl.acm.org/doi/10.1145/775047.775131

[6] Saurabh Verma, Zhi-Li Zhang, ”Stability and Generalization of Graph Con-
volutional Neural Networks”. https://doi.org/10.48550/arXiv.1905.01004

[7] Moritz Hardt, et al. ”https://arxiv.org/pdf/1509.01240.pdf”.
https://arxiv.org/abs/1509.01240.

[8] Chiyuan Zhang, et al., ”Understanding deep
learning (still) requires rethinking generalization”.
https://dl.acm.org/doi/fullHtml/10.1145/3446776/

11

